US009207910B2

a2 United States Patent 10) Patent No.: US 9,207,910 B2
Azadet et al. 45) Date of Patent: *Dec. 8, 2015
(54) DIGITAL SIGNAL PROCESSOR HAVING (58) Field of Classification Search
INSTRUCTION SET WITH AN X* FUNCTION CPC combination set(s) only.
USING REDUCED LOOK-UP TABLE See application file for complete search history.
(75) Inventors: Kameran Azadet, Morganville, NJ (56) References Cited
(US), Jian-Guo Chen, Basklng Rldge, U.S. PATENT DOCUMENTS
NJ (US); Samer Hijazi, Bethlehem, NJ
(US); Joseph Williams, Holmdel, NJ 5,990,894 A * 11/1999 Huetal ..o 345/418
(US) 6,529,922 B1* 3/2003 .. 708/204
7,657,589 B2* 2/2010 .. 708/605
3k
(73) Assignee: Intel Corporation, Santa Clara, CA %883;83%82;; ﬁ} e 11%8843‘ ;82@3
(Us) 2004/0122878 Al* 6/2004 .. 708/290
2009/0037504 Al* 2/2009 708/277

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 1154 days. Primary Examiner — llwoo Park

This patent is subject to a terminal dis- (74) Attorney, Agent, or Firm — Nicholson De Vos Webster
claimer. & Elliot LLP

* cited by examiner

(21) Appl. No.: 12/362,874 (57) ABSTRACT

A digital signal processor is provided having an instruction

(22) Filed: Jan. 30,2009 set with an x* function that uses a reduced look-up table. The

(65) Prior Publication Data disglosed digital signal processor evaluate?s anx* function fqr
an input value, X, by computing Log(x) in hardware; multi-
US 2010/0198893 Al Aug. 5, 2010 plying the Log(x) value by K; and determining the x* func-
tion by applying an exponential function in hardware to a
(51) Int.CL result of the multiplying step. One or more of the computation
GO6F 1/035 (2006.01) of Log(x) and the exponential function employ at least one
GOGF 7/556 (2006.01) look-up table having entries with a fewer number of bits than
(52) US.CL a number of bits in the input value, x.
CPC ..o GOG6F 7/556 (2013.01); GO6F 1/035
(2013.01); GO6F 2101/10 (2013.01) 29 Claims, 2 Drawing Sheets

210~ COMPUTE Log(x) IN HARDWARE

COMPUTE EXPONENTIAL OF
PREVIOUS RESULT IN HARDWARE

[
[#2)
(=]

]
]
]
]
]
]
]
l
]
-]
K —i 220 MULTIPLY RESULT BY K :
]
]
i
]
I
|
]
]
]
I
-

U.S. Patent Dec. 8, 2015 Sheet 1 of 2 US 9,207,910 B2

FIG. 1

100
S

DIGITAL SIGNAL PROCESSOR

FUNCTIONAL UNIT(S)
FOR XK' FUNCTION(S)

A

110+

\ i

120 LOOK-UP TABLE(S)

210~ COMPUTE Log(x) IN HARDWARE

\ i

|
|
|
I
|
|
|
I
|
w I
x —i 220 MULTIPLY RESULT BY K !
|
|
|
|
|
|
|
|
|
|
-4

\ i

| COMPUTE EXPONENTIAL OF
PREVIOUS RESULT IN HARDWARE

U.S. Patent Dec. 8, 2015 Sheet 2 of 2 US 9,207,910 B2

FIG. 3
320 z4 z) Ty
I 310-1 tsm—z 1 310-N
S))

I i
| |
| I
| | FUNCTIONAL UNIT | | FUNCTIONAL UNIT FUNCTIONAL UNIT| |
I FOR xK FOR xK <o FOR xK |
| FUNCTIONS FUNCTIONS FUNCTIONS |
| i
| |
| |
| |
L S

US 9,207,910 B2

1
DIGITAL SIGNAL PROCESSOR HAVING
INSTRUCTION SET WITH AN X* FUNCTION
USING REDUCED LOOK-UP TABLE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is related to U.S. patent application
Ser. No. 12/324,926, entitled “Digital Signal Processor Hav-
ing Instruction Set with One or More Non-Linear Complex
Functions;” U.S. patent application Ser. No. 12/324,927,
entitled “Digital Signal Processor Having Instruction Set
With One Or More Non-Linear Functions Using Reduced
Look-Up Table;” U.S. patent application Ser. No. 12/324,
931, entitled “Digital Signal Processor Having Instruction Set
with One or More Non-Linear Functions Using Reduced
Look-Up Table with Exponentially Varying Step-Size;” and
U.S. patent application Ser. No. 12/324,934, entitled “Digital
Signal Processor with One or More Non-Linear Functions
Using Factorized Polynomial Interpolation;” each filed Nov.
28, 2008 and incorporated by reference herein.

FIELD OF THE INVENTION

The present invention is related to digital signal processing
techniques and, more particularly, to techniques for digital
processing of non-linear functions.

BACKGROUND OF THE INVENTION

Digital signal processors (DSPs) are special-purpose pro-
cessors utilized for digital processing. Signals are often con-
verted from analog form to digital form, manipulated digi-
tally, and then converted back to analog form for further
processing. Digital signal processing algorithms typically
require a large number of mathematical operations to be
performed quickly and efficiently on a set of data.

DSPs thus often incorporate specialized hardware to per-
form software operations that are often required for math-
intensive processing applications, such as addition, multipli-
cation, multiply-accumulate (MAC), and shift-accumulate. A
Multiply-Accumulate architecture, for example, recognizes
that many common data processing operations involve mul-
tiplying two numbers together, adding the resulting value to
another value and then accumulating the result. Such basic
operations can be efficiently carried out utilizing specialized
high-speed multipliers and accumulators.

DSPs, however, generally do not provide specialized
instructions to support non-linear mathematical functions,
such as exp, log, cos, 1/x and x*. Increasingly, however, there
is a need for non-linear arithmetic operations in processors. A
nonlinear function is any problem where the variable(s) to be
solved for cannot be written as a linear sum of independent
components. If supported at all, a DSP supports a non-linear
function by using a large look-up table (LUT). An exemplary
LUT may store on the order of 2,000 16 bit values, and thus
require 32 kilobits of random access memory (RAM). The
LUT is typically implemented in a separate dedicated SRAM
(so that data and the non-linear LUT can be accessed at the
same time to achieve improved performance).

In cases where the DSP is based on VLIW (Very Long
Instruction Word) or SIMD (Single Instruction Multiple
Data) architectures with N issues slots, the memory size
becomes even larger. The LUT must be replicated N times
because each issue slot must be able to read different values in
the look-up table simultaneously, as the values of the data in
each issue slot may be different. This replication of memory

10

15

20

25

30

35

40

45

50

55

60

2

results in an even greater silicon area. For example, assuming
a LUT in a 4-way vector co-processor, a memory size of 128
Kb is required (32 Kbx4). In addition, if different non-linear
functions are required for different parts of a program being
executed, the various LUTs must be loaded into memory,
thereby significantly increasing latency and potentially
reducing performance.

A need therefore exists for a digital signal processor having
an instruction set that supports an x* function using a look-up
table of reduced size.

SUMMARY OF THE INVENTION

Generally, a digital signal processor is provided having an
instruction set with an x* function that uses a reduced look-up
table. According to one aspect of the invention, the disclosed
digital signal processor evaluates an x* function for an input
value, x, by computing Log(x) in hardware; multiplying the
Log(x) value by K; and determining the x* function by apply-
ing an exponential function in hardware to a result of the
multiplying step. One or more of the computation of Log(x)
and the exponential function employ at least one look-up
table having entries with a fewer number of bits than a number
of bits in the input value, x.

The Log(x) value can obtained by decomposing the input
value, x, to a first part, N, a second part, q, and a remaining
part, r, wherein the first part, N, is identified by a position of
amost significant bit of the input value, x, and the second part,
q, is comprised of a number of bits following the most sig-
nificant bit, wherein the number is small relative to a number
of bits in the input value, x. The logarithm function can be
determined for the input value, x, by summing values of N,

1
L 1+ =
ng(+ 24]

and Log,(1+€), where said epsilon term, €, is computed using
the expression

where

1 y!
(1 + zq]

is obtained from a look-up table.

The exponential function of the result can be obtained by
decomposing the input value, x, to an integer part, N, a first
fractional part, q,, larger than a specified value, x,, and a
second fractional part, q,, smaller than the specified value, x,,.
The exponential function for the result is obtained by multi-
plying 2%, 29! and 2" together.

A more complete understanding of the present invention,
as well as further features and advantages of the present
invention, will be obtained by reference to the following
detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11s aschematic block diagram of an exemplary digital
signal processor that incorporates features of the present
invention;

US 9,207,910 B2

3

FIG. 2 is a flow chart describing an exemplary implemen-
tation of an x* function computation process that incorpo-
rates features of the present invention; and

FIG. 3 is a schematic block diagram of an exemplary vec-
tor-based digital signal processor that processes one or more
numbers simultaneously in accordance with an embodiment
of the present invention.

DETAILED DESCRIPTION

The present invention provides a digital signal processor
that supports an x* function using one or more look-up tables
of reduced size. The present invention provides a digital sig-
nal processor that computes arbitrary powers of the input
data, x, suchas x?, x>, 1/x and sqrt(x), by companding the data
(i.e., first taking log(x) using a linear operation (multiply by
k)) and then taking an exponential of the result. Generally,
one or more look-up tables store a subset of values for at least
a portion of the computation of the logarithm or exponential
functions. As used herein, the term “digital signal processor”
shall be a processor that executes instructions in program
code. Further, a hard-wired logic implementation of digital
signal processing functions is not considered herein. It is
noted that the disclosed x* function can be applied for values
of x that are scalar or vector inputs.

In this manner, the present invention supports x* functions
by using a smaller look-up table than required by conven-
tional techniques. As previously indicated, an exemplary
look-up table may store on the order of 2,000 16 bit values,
and thus require 32 kilobits of random access memory
(RAM). With the present invention, a smaller look-up table
can be employed to store a subset of the 2,000 values.

FIG.11s aschematic block diagram of an exemplary digital
signal processor 100 that incorporates features of the present
invention. As shown in FIG. 1, the exemplary digital signal
processor 100 includes one or more functional units 110 for
xX functions. In addition, the digital signal processor 100
comprises one or more look-up tables 120 that store a subset
of values for computing the x* function.

As discussed hereinafter, in various embodiments, the digi-
tal signal processor 100 may use hardware or a look-up table
(or a combination thereof) to compute the x* function. Gen-
erally, if the digital signal processor 100 is processing soft-
ware code that includes a predefined instruction keyword
corresponding to an x* function and any appropriate operands
for the function, the instruction decoder must trigger the
appropriate x* functional units 110 that is required to process
the instruction. It is noted that an x* functional unit 110 can be
shared by more than one instruction.

Generally, the present invention extends conventional digi-
tal signal processors to provide an enhanced instruction set
that supports x* functions using one or more look-up tables.
The digital signal processor 100 in accordance with the
present invention receives at least one number as an input,
applies an x* function to the input and generates an output
value.

The disclosed digital signal processors may have a scalar
architecture, as shown in FIG. 1, that processes a single num-
ber at a time, or a vector architecture, as discussed hereinafter
in conjunction with FIG. 3, that processes one or more num-
bers simultaneously. In the case of a vector-based digital
signal processor implementation, the input number is a vector
comprised of a plurality of scalar numbers that are processed
in parallel.

The present invention recognizes that an x* function can be
computed using the following expression:

K =elostd m

10

15

20

25

30

35

40

45

50

55

60

65

4

since exponential and logarithm functions are inverse func-
tions. Further, since log(x*) equals K-log(x), then
wE=eKiLog @
FIG. 2 is a flow chart describing an exemplary implemen-
tation of an x* function computation process 200 that incor-
porates features of the present invention. As shown in FIG. 2,
the x* function computation process 200 initially computes
Log(x) in hardware during step 210. Thereafter, the result of
step 210 is multiplied by K during step 220. Thus, steps 210
and 220 compute the numerator of the right hand side of
equation (2). Finally, an exponential function is applied to the
result of step 220 in hardware during step 230 to obtain the
desired x* value.

The logarithm function performed during step 210 can
employ, for example, the techniques described in U.S. patent
application Ser. No. 12/362,899, filed contemporaneously
herewith, entitled “Digital Signal Processor Having Instruc-
tion Set With A Logarithm Function Using Reduced Look-Up
Table,” incorporated by reference herein. Generally, the loga-
rithm of an input value, x, can be obtained by decomposing
the input value, x, to a first part, N, a second part, q, and a
remaining part, r, wherein the first part, N, is identified by a
position of a most significant bit of the input value, x, and the
second part, g, is comprised of a number of bits following the
most significant bit, wherein the number is small relative to a
number of bits in the input value, x. A value

1
L 1+ =
ng(+ 24]

is obtained from a first look-up table based on the second part,
g. An epsilon term, €, is computed using the expression

and an expression Log,(1+¢) is evaluated using a polynomial
approximation. The desired logarithm function is then deter-
mined for the input value, x, by summing the values of N,

1
L 1+ =
ng(+ 24]

and Log,(1+€). An initial basis of the logarithm function can
optionally be translated from a binary representation to an
arbitrary basis, Y, by multiplying a result of summing opera-
tion by Log,(2), where log4(2), is obtained from a look-up
table. In addition, the value

can be obtained from a look-up table. The epsilon term, €, can
be computed by shifting r by N and multiplying by

US 9,207,910 B2

The exponential function performed during step 230 can
employ, for example, the techniques described in U.S. patent
application Ser. No. 12/362,879, filed contemporaneously
herewith, entitled “Digital Signal Processor Having Instruc-
tion Set With An Exponential Function Using Reduced Look-
Up Table,” incorporated by reference herein. Generally, an
exponential function of an input value, X, can be obtained by
decomposing the input value, x, to an integer part, N, a first
fractional part, q,, larger than a specified value, x,, and a
second fractional part, q,, smaller than the specified value, x,,.
A value 272 is computed using a polynomial approximation. A
value 27! can be obtained from a look-up table. Finally, the
exponential function for the input value, x, is obtained by
multiplying 272, 27 and 2" together.

An initial basis, Z, of the input value, x, can optionally be
converted to a desired basis, Y, by multiplying the input value,
X, by logAY), where log(Y), is obtained from a second
look-up table. The multiplication can be performed by first
multiplying the values 292 and 27! together and the multipli-
cation by 2% is performed by shifting a result of the first
multiplication by N bits. The 2% value can be computed using
a barrel shifter. The entries in the look-up table have a fewer
number of bits than a number of bits in the input value, x.

FIG. 3 is a schematic block diagram of an exemplary vec-
tor-based digital signal processor 300 that processes one or
more numbers simultaneously in accordance with an embodi-
ment of the present invention. Generally, the vector-based
implementation of FIG. 3 increases the number of MIPS
(instructions per second), relative to the scalar implementa-
tion of FIG. 1, by performing different processes concur-
rently. Thus, the vector-based digital signal processor 300
contains plural functional units for x* functions 310-1
through 310-N. For example, a dual digital signal processor
300 contains two functional units 310-1 and 310-2 that are
capable of performing two independent x* function opera-
tions concurrently.

As noted above, the input to the vector-based digital signal
processor 300 is a vector, X, comprised of a plurality of scalar
numbers, x,, that are processed in parallel. For example,
assume a vector-based digital signal processor 300 supports
an x* function for a vector, X, where X is comprised of scalar
numbers x, through x,. The exemplary x* function may be
expressed as follows:

Pow_vecd(x,X5,%3,%4,K).

CONCLUSION

While exemplary embodiments of the present invention
have been described with respect to digital logic blocks and
memory tables within a digital signal processor, as would be
apparent to one skilled in the art, various functions may be
implemented in the digital domain as processing steps in a
software program, in hardware by circuit elements or state
machines, or in combination of both software and hardware.
Such software may be employed in, for example, a digital
signal processor, application specific integrated circuit or
micro-controller. Such hardware and software may be
embodied within circuits implemented within an integrated
circuit.

Thus, the functions of the present invention can be embod-
ied in the form of methods and apparatuses for practicing

10

15

20

25

30

35

40

45

50

55

60

65

6

those methods. One or more aspects of the present invention
can be embodied in the form of program code, for example,
whether stored in a storage medium, loaded into and/or
executed by a machine, wherein, when the program code is
loaded into and executed by a machine, such as a processor,
the machine becomes an apparatus for practicing the inven-
tion. When implemented on a general-purpose processor, the
program code segments combine with the processor to pro-
vide a device that operates analogously to specific logic cir-
cuits. The invention can also be implemented in one or more
of an integrated circuit, a digital signal processor, a micro-
processor, and a micro-controller.

It is to be understood that the embodiments and variations
shown and described herein are merely illustrative of the
principles of this invention and that various modifications
may be implemented by those skilled in the art without
departing from the scope and spirit of the invention.

We claim:

1. A method performed by a vector-based digital signal
processor for evaluating a non-linear x* function for an input
vector, X, said method comprising:

obtaining one or more x* software instructions that imple-

ment said non-linear x* function;
receiving said input vector comprising at least two scalar
numbers and K;

in response to a predefined software instruction keyword
for said at least one of said obtained x* software instruc-
tions, invoking at least one hardware functional unit that
implements said one or more x* software instructions to
perform the following steps for each component of said
input vector, wherein said vector-based processor pro-
cesses said at least two scalar numbers of said input
vector substantially simultaneously;

computing Log(x) in hardware;

multiplying said Log(x) value by K; and

determining said x* function by applying an exponential

function in hardware to a result of said multiplying step,
wherein one or more of said computation of Log(x) and
said exponential function employ at least one look-up
table having entries with a fewer number of bits than a
number of bits in the input vector, X, wherein said one or
more x* software instructions that implement said non-
linear x* function is part of an instruction set of said
vector-based digital signal processor and wherein said
non-linear x* function computes a K” power of said
input vector, X.

2. The method of claim 1, where said Log(x) value is
obtained by the input vector, X, to a first part, N, a second part,
g, and a remaining part, r, wherein said first part, N, is iden-
tified by a position of a most significant bit of said input
vector, X, and said second part, q, is comprised of a number of
bits following said most significant bit, wherein said number
is less than five and small relative to a number of bits in said
input vector, X.

3. The method of claim 2, further comprising the step of
obtaining a value

1
Logz(l + zq]

from a first look-up table based on the second part, g.
4. The method of claim 2, further comprising the step of
computing an epsilon term, €, using the expression

US 9,207,910 B2

where

is obtained from a look-up table.
5. The method of claim 4, wherein said epsilon term, €, is
computed by shifting r by N and multiplying by

6. The method of claim 4, further comprising the step of
evaluating an expression Log,(1+€) using a polynomial
approximation.

7. The method of claim 2, wherein said logarithm function
is determined for the input vector, x, by summing values of N,

1
Logz(l + zq]

and Log,(1+€) to produce a corresponding component of an
output vector.

8. The method of claim 7, further comprising the step of
translating an initial basis for said log(x) function to an arbi-
trary basis, Y, by multiplying a result of said summing step by
Log(2), where log;(2), is obtained from a look-up table.

9. The method of claim 1, where said exponential function
of'said result is obtained by decomposing a component of the
input vector, X, to an integer part, N, a first fractional part, q;,
larger than a specified value, x,, and a second fractional part,
q,, smaller than the specified value, x,.

10. The method of claim 9, wherein a value 272 is computed
using a polynomial approximation.

11. The method of claim 9, wherein a value 27! is obtained
from a look-up table.

12. The method of claim 9, wherein said exponential func-
tion for said result is obtained by multiplying 292, 29! and 2%
together.

13. The method of claim 12, wherein said multiplication
comprises first multiplying the values 292 and 27! together and
the multiplication by 2 is performed by shifting a result of
the first multiplication by N bits.

14. The method of claim 9, further comprising the step of
converting an initial basis, Z, of the component of the input
vector, X, to a desired basis, Y, by multiplying the component
of'the input vector, X, by log(Y), where log_(Y), is obtained
from a look-up table.

15. A vector-based digital signal processor for evaluating a
non-linear x* function for an input vector, X, comprising:

a first input for receiving one or more x* software instruc-

tions that implement said non-linear x* function;

a data input for receiving said input vector comprising at

least two scalar numbers and K;

a set of hardware units responsive to the first input and the

data input;

10

15

20

25

30

35

40

45

50

55

60

65

8

amemory coupled to the hardware units and storing at least
one look-up table wherein the vector-based digital sig-
nal processor is operative to perform the following steps
for each component of said input vector, wherein said
vector-based processor processes said at least two scalar
numbers of said input vector substantially simulta-
neously:
in response to a predefined software instruction keyword
for said at least one of said received x* software instruc-
tions, invoke at least one hardware unit that implements
said one or more x* software instructions operative to:
compute Log(x) in hardware;
multiply said Log(x) value by K; and
determine said x* function by applying an exponential
function in hardware to a result of said multiplying step,
wherein one or more of said computation of Log(x) and
said exponential function employ at least one look-up
table having entries with a fewer number of bits than a
number of bits in the input vector, X, wherein said one or
more of said x* software instructions that implement
said non-linear x* function is part of an instruction set of
said digital signal processor and wherein said non-linear
x* function computes a K power of said input vector, x.
16. The vector-based digital signal processor of claim 15,
where said Log(x) value is obtained by decomposing the
input vector, X, to a first part, N, a second part, q, and a
remaining part, r, wherein the first part, N, is identified by a
position of a most significant bit of the input vector, x, and
said second part, q, is comprised of a number of bits following
said most significant bit, wherein said number is less than five
and small relative to a number of bits in said input vector, x.
17. The vector-based digital signal processor of claim 16,
further configured to obtain a value

1
L 1+ =
ng(+ 24]

from a first look-up table based on the second part, g.

18. The vector-based digital signal processor of claim 16,
further configured to compute an epsilon term, €, using the
expression

where

is obtained from a look-up table.

19. The vector-based digital signal processor of claim 18,
wherein said epsilon term, €, is computed by shifting r by N
and multiplying by

US 9,207,910 B2

9

20. The vector-based digital signal processor of claim 18,
further configured to compute an expression Log,(1+€) using
a polynomial approximation.

21. The vector-based digital signal processor of claim 16,
wherein said logarithm function is determined for the input
vector, X, by summing values of N,

1
L 1+ =
ng(+ 24]

and Log,(1+€) to produce a corresponding component of an
output vector.

22. The vector-based digital signal processor of claim 21,
further configured to translate an initial basis for said log(x)
function to an arbitrary basis, Y, by multiplying a result of said
summing step by Log(2), where Log;(2), is obtained from a
look-up table.

23. The vector-based digital signal processor of claim 15,
where said exponential function of said result is obtained by
decomposing a component of the input vector, X, to an integer
part, N, a first fractional part, q,, larger than a specified value,
X,, and a second fractional part, q,, smaller than the specified
value, X,

24. The vector-based digital signal processor of claim 23,
wherein a value 2% is computed using a polynomial approxi-
mation.

25. The vector-based digital signal processor of claim 23,
wherein a value 27! is obtained from a look-up table.

26. The vector-based digital signal processor of claim 23,
wherein said exponential function for said result is obtained
by multiplying 272, 29! and 2" together.

27. The vector-based digital signal processor of claim 26,
wherein said multiplication comprises first multiplying the
values 2% and 27 together and the multiplication by 2 is
performed by shifting a result of the first multiplication by N
bits.

10

15

25

30

35

10

28. The vector-based digital signal processor of claim 23,
further configured to convert an initial basis, Z, of the com-
ponent of the input vector, X, to a desired basis, Y, by multi-
plying the component of the input vector, X, by Log(Y),
where Log(Y), is obtained from a look-up table.

29. An integrated circuit, comprising:

a vector-based digital signal processor for evaluating a
non-linear x* function for an input vector, x, compris-
ing:

a first input for receiving one or more x* software instruc-
tions that implement said non-linear x* function;

a data input for receiving said input vector comprising at
least two scalar numbers and K;

a memory storing at least one look-up table; and

at least one processor, coupled to the memory, operative to:

in response to a predefined software instruction keyword
for said at least one of said received x* software instruc-
tions, invoke at least one hardware functional unit that
implements said one or more non-linear x* software
instructions operative to perform the following steps for
each component of said input vector, wherein said vec-
tor-based processor processes said at least two scalar
numbers of said input vector substantially simulta-
neously:

compute Log(x) in hardware;

multiply said Log(x) value by K; and

determine said x* function by applying an exponential
function in hardware to a result of said multiplying step,
wherein one or more of said computation of Log(x) and
said exponential function employ at least one look-up
table having entries with a fewer number of bits in the
input vector, X, wherein said one or more of said x*
software instructions that implement said non-linear x*
function is part of an instruction set of said vector-based
digital signal processor and wherein said non-linear x*
function computes a K power of said input vector, x.

#* #* #* #* #*

